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The 19F NMR of the compound at ~ 10 0C in SO2ClF shows 
a single CF3 peak at -73.42 ppm relative to external CFCl3. As 
the sample was warmed to 35 0C, successive spectra showed a 
decrease in the signal for the xenon compound and a subsequent 
growth of two other singlets, one due to CF3Cl (-28.27 ppm) and 
the other at -76.34 ppm. The latter does not correspond to 
previously observed decomposition products for the compound, 
and along with the CF3Cl, this indicates a reaction with the solvent 
upon decomposition. 

Further structural characterization of Xe[N(S02CF3)2]2 to 
provide direct physical evidence for the xenon-nitrogen bond is 
in progress, and extension of this now reaction type to other 
systems is planned. 
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We describe herein that the fluorescence intensity of cyanine 
dyes is markedly enhanced by binding to synthetic bilayer mem
branes and that the enhancement is strongly affected by the 
chemical structure and fluidity of the membrane. Cyanine dyes 
have been known as sensitizers in the photographic process.2 

Recent attempts to use these dyes as probes for the physical state 
and the membrane potential of liposomes and interfacial mono
layers1"5 and as chromophores in organic solar cells6 and dye lasers7 

called for widespread attention to their fluorescence behavior. 
Dialkylammonium amphiphiles 1 and 2 produce stable bilayer 
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aggregates (vesicles and lamellae) upon dispersion in water by 
sonication.8-11 These bilayer membranes possess physicochemical 
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Figure 1. Absorption (dotted line) and fluorescence (solid line) spectra 
of cyanine dye 3 bound to aqueous bilayer 1, n = 4 (X = Cl; [1] = 2 X 
10'3 M, [3] = 5 X 10"7 M). 

Table I. Quantum Yield of Cyanine Dye 3 in Various Media 

media 

1, n = 2, (X = Br) 
1, n = 4, (X = Cl)" 
1,« = 6, (X = Br) 
1,« = 10, (X=Br) 
2 
CTAC 
water 
methanol 
glycerol 

* F 

20 0C 

0.40 
0.64 
0.60 
0.64 
0.063 
0.035 

-0.0025 
-0.0024 

0.24 

35 °C 

0.08 

0.047 
0.019 

-0.0018 
-0.0017 

P, (20 °C) 

0.47 
0.47 
0.47 
0.46 
0.43 
0.39 
0.40 
0.39 
0.47 

° * F is almost the same when Cl is replaced by Br. 

characteristics common to those of biolipid bilayers such as the 
crystal-to-liquid crystal phase transition.12 

Figure 1 shows absorption and fluorescence spectra of cyanine 
dye 3 bound to aqueous bilayers of 1 (« = 4) (counterion, Cl").13 
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The molar ratio of the dye and the membrane is 1:4000, and 
self-quenching of fluorescence is not observed in this range. Both 
the absorption and fluorescence spectra show remarkable tem
perature dependence. Although the absorption spectrum is not 
sensitive to temperature at 20-25 0C with Xmax at 565 nm («max 
220000), its intensity diminishes drastically at 27-29 0C, becoming 
constant again at 30-35 0C (Xmax 555 nm, emax 110000). In 
contrast, the spectrum is virtually invariable in the whole tem
perature range in methanol (Xmax 542 nm), in water (Xmax 541 
nm), and in aqueous cetyltrimethylammonium chloride (CTAC) 
micelles (Xn̂ x 565 nm). These results are to be discussed elsewhere 
in terms of organization of dye molecules at the membrane sur
face.14 

The fluorescence spectrum shows temperature dependence 
similar to that of the absorption spectrum in that a drastic intensity 
change is observed at 27-29 0C. The fluorescence intensity, /F, 
in the low-temperature range is ca. 8 times larger than that in 
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using m-(dimethylamino)nitrobenzene as reference. The excitation wavelength 
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the high-temperature region, although the location of the emission 
maximum does not vary. The fluorescence intensities in water 
and in the CTAC micelle are much smaller and decrease gradually 
with temperature (20-35 0C); in the CTAC micelle /F at 20 0C 
is ca. 2 times larger than that at 35 0C. The crystal-to-liquid 
crystal phase transition occurs at 31 0C (transition range 27-36 
0C) for the aqueous bilayer of 1 (« = 4).10 Therefore, the drastic 
spectral changes of Figure 1 are related to the phase transition 
of the membrane matrix. The /F value is affected by the phase 
transition also when the cyanine dye is bound to the bilayer 
membrane of the simpler dialkylammonium salt 2 (transition 
temperature (Tc) 28 0C); however, the intensity enhancement is 
much smaller, /F at 27 0C being only 20% larger than that at 30 
0C. 

On the other hand, the fluorescence spectrum of cyanine dye 
4 is strongly influenced by the phase transition of both of bilayers 
1 and 2. The /F value of dye 4 in the bilayer matrix of 1 (« = 
4) drastically changes at T0 (7F at 27 0C is 5 times larger than 
that at 30 0C), and /F in the rigid membrane is 23 and 100 times 
larger than those in the CTAC micelle and in water, respectively. 
A similar, though less drastic, spectral change of dye 4 is observed 
at Tc in the bilayer matrix of 2. 

The fluorescence quantum yields ($F) of dye 315 in various 
media are summarized in Table I. The $F is enhanced by more 
than 10 times in the CTAC micelle (0.035 at 20 0C) than in water; 
this increment coincides with that observed by Gratzel et al. for 
a cationic cyanine dye in the anionic micelle of sodium lauryl 
sulfate.17 A much greater *F enhancement is observed for the 
dye bound to the rigid (below Tc, 20 0C) bilayer membrane of 
1 (n = 4, X = Cl). This value (0.64) is 20 times larger than that 
in the CTAC micelle and 250 times larger than those in water 
or in methanol. The enhancement is much reduced in the fluid 
membrane matrix, although $F is still larger than that in the 
CTAC micelle. 

The chemical structure of the membrane surface exerts sig
nificant influences on *F. The *F value of the membrane of 1, 
n = 6 and 10, is close to that of 1, n = 4, whereas that for 1, n 
= 2, is reduced (0.40). The small difference in the spacer length 
can be crucial for obtaining high *F values. The <t>F value obtained 
in the matrix of the simple dialkylammonium bilayer of 2 is only 
2 times larger than that in the CTAC micelle. It is clear that 
large fluorescence enhancement is rendered possible by dye binding 
to specific membrane surfaces. 

The degree of fluorescence polarization (P)18 is used as a 
measure of the rotational motion of the excited state. The P value 
(Table I) is relatively large even in water, and consequently, the 
increment in the membrane matrix is small. In general, $F of 
cyanine dyes is enhanced by the prevention of internal conversion 
due to suppression of twisting of the polymethine chain, as con
firmed by fluorescence measurements of rigidized dyes.20,21 Our 
preliminary experiments indicate that the fluorescence lifetime 
(TF) of 3 is lengthened to approximately the same extent in bilayer 
membranes (1 and 2), CTAC micelle, and glycerol. The $F value 
is still different among these media, and therefore, the $F en
hancement cannot be explained by the TF term alone. We reported 
recently that absorption spectra of methyl orange and cyanine 
dyes were extensively modified in the bilayer matrix, and discussed 
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nol; absorption spectrum, Xn^x 542 nm; fluorescence spectrum (corrected), \mx 
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the results in terms of specific orientation and association of the 
dye molecules at the membrane surface.11'14 The absorption 
spectrum of 3 changes also specifically with the physical state 
(Figure 1) or chemical structure22 of the matrix membrane. This 
indicates that the ground-state electronic configuration is perturbed 
by the specific interaction and that the *F variation may not be 
attributed solely to the excited-state characteristics. It is well-
known that the fluorescence property changes drastically by dye 
aggregation. 

We have observed similar fluorescence enhancements for other 
anionic cyanine dyes. In addition, cationic cyanine dyes show 
enhanced fluorescence in the presence of the anionic bilayer 
membrane.23 Therefore, the fluorescence enhancement in the 
rigid bilayer matrix appears to be a widely observable phenomenon. 
Recent data by Whitten and co-workers for a stilbene surfactant 
point to the same conclusion.24 We are currently examining the 
effect of the bilayer matrix on the fluorescence property of a large 
variety of cyanine and merocyanine dyes. These studies would 
provide unique means to control the flow of the excitation energy 
of cyanine and related dyes at the membrane surface. Practical 
applications of this technique in various fields can be readily 
envisaged. 
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Thienamycin 1 is the first reported member of a series of 
recently discovered antibiotics possessing the novel carbapen-2-em 
ring system.1,2 Its remarkable antibacterial activity3 has prompted 
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